On lifting properties for confluent mappings
نویسندگان
چکیده
منابع مشابه
Hereditarily Weakly Confluent Mappings onto S
Results are obtained about the existence and behavior of hereditarily weakly confluent maps of continua onto the unit circle S1. A simple and useful necessary and sufficient condition is given for a map of a continuum, X, onto S1 to be hereditarily weakly confluent (HWC). It is shown that when X is arcwise connected, an HWC map of X onto S1 is monotone with arcwise connected fibers. A number of...
متن کاملThe Lifting Property for Classes of Mappings
The lifting property of continua for classes of mappings is defined. It is shown that the property is preserved under the inverse limit operation. The results, when applied to the class of confluent mappings, exhibit conditions under which the induced mapping between hyperspaces is confluent. This generalizes previous results in this topic.
متن کاملWeakly Confluent Mappings and Finitely-generated Cohomology
In this paper we answer a question of Wayne Lewis by proving that if X is a one-dimensional, hereditarily indecomposable continuum and if HX(X) is finitely generated, then C(X), the hyperspace of subcontinua of X, has dimension 2. Let C(A) be the hyperspace of subcontinua of the continuum X with the topology determined by the Hausdorff metric. A classical theorem of J. L. Kelley [4] asserts tha...
متن کاملBoolean Lifting Properties for Bounded Distributive Lattices
In this paper, we introduce the lifting properties for the Boolean elements of bounded distributive lattices with respect to the congruences, filters and ideals, we establish how they relate to each other and to significant algebraic properties, and we determine important classes of bounded distributive lattices which satisfy these lifting properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2004
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-04-07537-9